MMP for 3-dimensional Kahler generalized pairs

José Yáñez

UCLA

joint work with Omprokash Das and Christopher Hacon

September 29, 2023

BGS

토 🕨 🔺 토 🕨 👘

Ŧ

Recall:

Minimal Model Program: Let X be a projective variety with "good singularities". Then we want to find a birational maps

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_n,$$

and a contraction $X_n \to Z$, with $\dim Z < \dim X_n$, and either $\dim Z > 0$ and the general fiber is Fano, or Z is a point and K_{X_n} is nef.

토 🕨 🔸 토 🕨 - 토

Cone theorem. Let X be a projective variety with klt singularities. Then there are countably many rational curves $C_j \subset X$ such that $0 < -K_X \cdot C_j \leq 2 \dim X$, and

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{K_X \ge 0} + \sum \mathbb{R}_{\ge 0}[C_j].$$

Contraction theorem. Let X be a projective variety with klt singularities. Let $F \subset \overline{NE}(X)$ be a K_X -negative extremal face. Then there is a unique morphism $\operatorname{cont}_F \colon X \to Z$ to a projective variety such that $(\operatorname{cont}_F)_* \mathcal{O}_X = \mathcal{O}_Z$ and an irreducible curve $C \subset X$ is mapped to a point if and only if $[C] \in F$.

Question. Can we find an equivalent statement for a Minimal Model Program if X is compact Kähler (but not projective)?

$$X$$

 $1\pi \neq projective$
 Y

< □ ▶

<□ > < 三 > < 三 > □ = - 三

Cone theorem. Let X be a projective variety with klt singularities. Then there are countably many rational curves $C_j \subset X$ such that $0 < -K_X \cdot C_j \leq 2 \dim X$, and

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{K_X \ge 0} + \sum \mathbb{R}_{\ge 0}[C_j].$$

Contraction theorem. Let X be a projective variety with klt singularities. Let $F \subset \overline{NE}(X)$ be a K_X -negative extremal face. Then there is a unique morphism $\operatorname{cont}_F \colon X \to Z$ to a projective variety such that $(\operatorname{cont}_F)_* \mathcal{O}_X = \mathcal{O}_Z$ and an irreducible curve $C \subset X$ is mapped to a point if and only if $[C] \in F$.

▲□ → ▲ □ → ▲ □ → □ □

[Höring- Campana]

let X be a compact analytic variety. We need new definitions.

 $N^{1}(X) \longrightarrow H^{1,1}_{\mathsf{BC}}(X)$ $N_{1}(X) \longrightarrow N_{1}(X)$ $\overline{\mathsf{NE}}(X) \longrightarrow \overline{\mathsf{NA}}(X)$ $\operatorname{Amp}(X) \longrightarrow \mathcal{K}(X)$

Replacing $N^1(X)$.

'로▶ ◀ 로▶ ' 로

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The Bott – Chern cohomology $H^{1,1}_{BC}(X)$ corresponds to the real d-closed (1,1)-forms with local potentials modulo $i\partial\bar{\partial}f$, or equivalently $H^{1,1}_{BC}(X)$ corresponds to the d-closed bidegree (1,1)-currents with local potentials modulo $i\partial\bar{\partial}g$. For the analytic case, we say $N^1(X) := H^{1,1}_{BC}(X)$.

We can define $N_1(X)$ as the real *d*-closed currents of bi-dimension (1,1) modulo the equivalence relation: $T_1 \equiv T_2$ if and only if $T_1(\eta) = T_2(\eta)$ for all real closed (1,1) forms η with local potentials.

We have that $N^1(X) = N_1(X)^*$.

Rat'l sing.

Replacing $\overline{\operatorname{NE}}(X)$. Kähler-Mori Cone

Define the Cone of currents $\overline{NA}(X) \subseteq N_1(X)$ as the closed cone generated by the positive closed currents of bi-dimension (1, 1).

We can see $\overline{\operatorname{NE}}(X) \subseteq \overline{\operatorname{NA}}(X)$ under the identification $C \mapsto T_C$, where $T_C(\eta) = \int_C \eta$.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ●

Kähler varieties.

A Kähler variety is an analytic variety that carries a positive (1,1) form ω such that locally on the smooth locus of X it can be written as $i\partial \bar{\partial} f$ for a plurisubharmonic smooth function f.

We call such form a Kähler form.

Let $\mathcal{K}(X) \subset N^1(X)$ be the convex cone generated by the classes of Kähler forms. A class $\alpha \in N^1(X)$ is said to be nef if $\alpha \in \overline{\mathcal{K}}$.

토 🕨 🔺 토 🕨 - 토

 $\sqrt{\alpha}$

 $\Delta = 0$, terminal Minimal model program for Kähler 3-folds. '20 Theorem. [Höring, Peternell '16], [Das, Hacon '23] Let (X, Δ) be a Q-factorial compact Kähler klt pair of dimension 3, such that $K_X + \Delta$ is pseudoeffective. Then there exists a minimal model program

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_n$$

such that $K_{X_n} + \Delta_n$ is nef.

Theorem. [Höring, Peternell '16], [Das, Hacon '23] Let (X, Δ) be a \mathbb{Q} -factorial compact Kähler klt pair of dimension 3, such that $K_X + \Delta$ is pseudoeffective. Then there are at most countably many rational curves $\{\Gamma_i\}$ such that $-(K_X + \Delta) \cdot \Gamma_i \leq 6$ and

$$\overline{\mathrm{NA}}(X) = \overline{\mathrm{NA}}(X)_{(K_X + \Delta) \ge 0} + \sum \mathbb{R}^+[\Gamma_i].$$

Can we generalize the notion of pairs in order to get a more "Kähler" flavor?

< □ ▶

A P

듣▶ ★ 돋▶ - 돈

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 \mathbf{b} -(1,1) currents.

Let X be a compact Kähler variety.

A closed b-(1,1) current β is a collection of closed (1,1) currents $\beta_{X'}$ on all proper bimeromorphic models $X' \to X$, such that if $f: X_1 \to X_2$ is a bimeromorphic morphism of models of X, then $f_*\beta_1 = \beta_2$.

Notice that $\beta_{X'}$ might not have local potentials.

If β is a closed positive (1,1) current with local potentials on X, then we can define a b-(1,1) current $\overline{\beta}$, by assigning to each model $\nu: X' \to X$ the (1,1) current $\overline{\beta}_{X'} := \nu^* \beta$.

If $\beta = \overline{\beta}$ for some (1,1) current β on X, then we say that β descends to X.

βx) ∉ H^{A,1}_{BC}(X).

토 🕨 🔸 토 🕨 - 토

 $\sqrt{\alpha}$

Generalized pairs for Kähler varieties.

Let X be a compact Kähler variety.

Let $\nu: X' \to X$ a resolution, B' and \mathbb{R} -divisor on X' with SNC support such that $B := \nu_* B' \ge 0$, and β a closed b-(1, 1) current. We say that $(X, B + \beta)$ is a generalized pair if

- $\boldsymbol{\beta}$ is a positive closed b-(1,1) current that descends to X',
- $[\boldsymbol{\beta}_{X'}] \in H^{1,1}_{\mathsf{BC}}(X')$ is nef,

•
$$[K_{X'} + B' + \beta_{X'}] = \nu^* \gamma$$
, for some $\gamma \in H^{1,1}_{\mathsf{BC}}(X)$.

Given $(X, B + \beta)$ and $\beta = \beta_{X'}$, then B' is uniquely determined.

A similar definition can be given for the relative setup.

■ ▶ ▲ ■ ▶ ■ • • • • • • •

Singularities.

Let P be a Weil divisor over X. Define the generalized discrepancy $a(P, X, B + \beta)$ as follows. Let $\nu: X' \to X$ be a log resolution of $(X, B + \beta)$ such that $P \subseteq X$? Then $a(P, X, B + \beta) = -\text{mult}_P(B')$. ghlt

We say that $(X, B + \beta)$ is generalized klt if $a(P, X, B + \beta) > -1$.

We say that $(X, B + \beta)$ is generalized lc if $a(P, X, B + \beta) \ge -1$.

We say that $(X, B + \beta)$ is generalized dlt if there is an open set $U \subseteq X$ such that $(U, (B + \beta)|_U)$ is a log resolution, $-1 \leq a(P, X, B + \beta) \geq 0$ for any prime divisor P on U, and $-1 < a(P, X, B + \beta)$ for any prime divisor P over X with center in $X \setminus U$.

If $(X, B + \beta)$ is a gklt pair, then X has rational singularities.

□ ▶ ▲ 글 ▶ ▲ 글 ▶ _ 글 _ _

Theorem. [Das, Hacon, Y. '23] Let $(X, B + \beta)$ be a gklt pair, where X is a compact Kähler 3-fold. Assume that $K_X + B + \beta$ is big. Then $(X, B + \beta)$ has a log canonical model, and there exist a log terminal model, and all such models admit a morphism to the log canonical model.

▲□ ▶ ▲ 트 ▶ ▲ 트 ▶ - 三

 $\sqrt{\alpha}$

Sketch of the proof.

• First, reduce to the case β_X Kähler and (X, B) log smooth.

 We have that K_X + B + β_X is pseudoeffective and that K_X + B + (1 + t)β_X is Kähler for t ≫ 0. Under this setup, we can run a K_X + B + β_X-MMP with scaling of tβ_X that terminates in a log terminal model.

• Let $X \dashrightarrow X^m$ be such model, with $K_{X^m} + B^m + (\beta_{X^m})$. Kähler

'로▶' ◀ 로▶ ' '로'

 $\mathcal{A} \mathcal{A} \mathcal{A}$

 Again, borrowing from the MMP for pairs, we can contract and flip all the K_{X^m} + B^m + β_{X^m}-trivial curves that are K_{X^m} + B^m-negative. We obtain X^m --→ Xⁿ.

[Collins, tosatti)

• From [Das, Hacon '20], $\text{Null}(K_{X^n} + B^n + \beta_{X^n})$ is a union of curves, and they can be contracted.

 Let Xⁿ → Z be the morphism obtained from contracting Null(K_{Xⁿ} + Bⁿ + β_{Xⁿ}), then Z is the log canonical model, and the map X[™]→ Z is also a morphism.

More results.

- Cone theorem for $\overline{NA}(X)$ in terms of $K_X + B + \beta_X$.
- If K_X + B + β_X is not big, then we obtain a contraction after running the MMP. If K_X + B + β_X is not pseudoeffective then we obtain a Mori fiber space.
- Finiteness of some minimal models, and local polyhedral decomposition of space of closed positive (1,1) currents (analogue to results from [BCHM])
- Minimal models are connected by flips, anti flips and flops.

토 🕨 🔸 토 🕨 - 토

Thank you!

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣</p>

 $\mathcal{O}QQ$