MMP for 3-dimensional Kahler generalized pairs

José Yáñez
UCLA
joint work with Omprokash Das and Christopher Hacon

September 29, 2023
BGS

Recall:
Minimal Model Program: Let X be a projective variety with "good singularities". Then we want to find a birational maps

$$
X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n},
$$

and a contraction $X_{n} \rightarrow Z$, with $\operatorname{dim} Z<\operatorname{dim} X_{n}$, and either $\operatorname{dim} Z>0$ and the general fiber is Fano, or Z is a point and $K_{X_{n}}$ is nef.

Cone theorem. Let X be a projective variety with klt singularities. Then there are countably many rational curves $C_{j} \subset X$ such that $0<-K_{X} \cdot C_{j} \leq 2 \operatorname{dim} X$, and

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(X)_{K_{X} \geq 0}+\sum \mathbb{R}_{\geq 0}\left[C_{j}\right] .
$$

Contraction theorem. Let X be a projective variety with klt singularities. Let $F \subset \overline{\mathrm{NE}}(X)$ be a K_{X}-negative extremal face. Then there is a unique morphism $\operatorname{cont}_{F}: X \rightarrow Z$ to a projective variety such that $\left(\operatorname{cont}_{F}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ and an irreducible curve $C \subset X$ is mapped to a point if and only if $[C] \in F$.

Question. Can we find an equivalent statement for a Minimal Model Program if X is compact Kähler (but not projective)?

Cone theorem. Let X be a projective variety with klt singularities. Then there are countably many rational curves $C_{j} \subset X$ such that $0<-K_{X} \cdot C_{j} \leq 2 \operatorname{dim} X$, and

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(X)_{K_{X} \geq 0}+\sum \mathbb{R}_{\geq 0}\left[C_{j}\right] .
$$

Contraction theorem. Let X be a projective variety with klt singularities. Let $F \subset \overline{\mathrm{NE}}(X)$ be a K_{X}-negative extremal face. Then there is a unique morphism $\operatorname{cont}_{F}: X \rightarrow Z$ to a projective variety such that $\left(\operatorname{cont}_{F}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ and an irreducible curve $C \subset X$ is mapped to a point if and only if $[C] \in F$.

[Höring-Campana]

let X be a compact analytic variety. We need new definitions.

$$
\begin{array}{lll}
N^{1}(X) & \longrightarrow & H_{\mathrm{BC}}^{1,1}(X) \\
N_{1}(X) & \longrightarrow & N_{1}(X) \\
\overline{\mathrm{NE}}(X) & \longrightarrow & \overline{\mathrm{NA}}(X) \\
\operatorname{Amp}(X) & \longrightarrow & \mathcal{K}(X)
\end{array}
$$

Replacing $N^{1}(X)$.

smooth function

The Bott - Chern cohomology $H_{\mathrm{BC}}^{1,1}(X)$ correspgnds to the real d-closed (1, 1) -forms with local potentials modulo $i \partial \bar{\partial} f$, or equivalently $H_{\mathrm{BC}}^{1,1}(X)$ corresponds to the d-closed bidegree $(1,1)$-currents with local potentials modulo $i \partial \bar{\partial} g$. For the analytic case, we say $N^{1}(X):=H_{\mathrm{BC}}^{1,1}(X) . \frac{5 \mathrm{~m}}{=} H^{1,1}(\mathrm{x})$ distribution
We can define $N_{1}(X)$ as the real d-closed currents of bi-dimension $(1,1)$ modulo the equivalence relation: $T_{1} \equiv T_{2}$ if and only if $T_{1}(\eta)=T_{2}(\eta)$ for all real closed $(1,1)$ forms η with local potentials.

$$
\stackrel{s m}{m}_{\sin ^{n-1, n-1}}(x)
$$

We have that $N^{1}(X)=N_{1}(X)^{*}$.
Rat'l sing.

Replacing $\overline{\mathrm{NE}}(X)$. Kähler-Mori Cone

Define the Cone of currents $\overline{\mathrm{NA}}(X) \subseteq N_{1}(X)$ as the closeed cone generated by the positive closed currents of bi-dimension (1,1).

We can see $\overline{\mathrm{NE}}(X) \subseteq \overline{\mathrm{NA}}(X)$ under the identification $C \mapsto T_{C}$, where $T_{C}(\eta)=\int_{C} \eta$.

Kähler varieties.

A Kähler variety is an analytic variety that carries a positive $(1,1)$ form ω such that locally on the smooth locus of X it can be written as $i \partial \bar{\partial} f$ for a plurisubharmonic smooth function f.

We call such form $\stackrel{\omega}{\text { a Kähler form. }}$
Let $\mathcal{K}(X) \subset N^{1}(X)$ be the convex cone generated by the classes of Kähler forms. A class $\alpha \in N^{1}(X)$ is said to be nef if $\alpha \in \overline{\mathcal{K}}$.

$\Delta=0$, terminal

Minimal model program f for Kähler 3-folds. '20
Theorem. [Höring, Peternell '16], [Dis, Hacon '23]
Let (X, Δ) be a \mathbb{Q}-factorial compact Kähler kIt pair of dimension 3, such that $K_{X}+\Delta$ is pseudoeffective. Then there exists a minimal model program

$$
X=X_{0} \rightarrow X_{1} \rightarrow \cdots \cdots X_{n}
$$

such that $K_{X_{n}}+\Delta_{n}$ is nef.
Theorem. [Höring, Peternell '16], [Dis, Macon '23]
Let (X, Δ) be a \mathbb{Q}-factorial compact Kähler kIt pair of dimension 3, such that $K_{X}+\Delta$ is pseudoeffective. Then there are at most countably many rational curves $\left\{\Gamma_{i}\right\}$ such that $-\left(K_{X}+\Delta\right) \cdot \Gamma_{i} \leq 6$ and

$$
\overline{\mathrm{NA}}(X)=\overline{\mathrm{NA}}(X)_{\left(K_{X}+\Delta\right) \geq 0}+\sum \mathbb{R}^{+}\left[\Gamma_{i}\right]
$$

Can we generalize the notion of pairs in order to get a more "Kähler" flavor?
b- $(1,1)$ currents.
Let X be a compact Kähler variety.
A closed b - $(1,1)$ current $\boldsymbol{\beta}$ is a collection of closed $(1,1)$ currents $\boldsymbol{\beta}_{X^{\prime}}$ on all proper bimeromorphic models $X^{\prime} \rightarrow X$, such that if $f: X_{1} \rightarrow X_{2}$ is a bimeromorphic orphism of models of X, then $f_{*} \boldsymbol{\beta}_{x}=\boldsymbol{\beta}_{2}$.

Notice that $\boldsymbol{\beta}_{X^{\prime}}$ might not have local potentials.
If β is a closed positive $(1,1)$ current with local potentials on X, then we can define a $\mathrm{b}-(1,1)$ current $\bar{\beta}$, by assigning to each model $\nu: X^{\prime} \rightarrow X$ the $(1,1)$ current $\bar{\beta}_{X^{\prime}}:=\nu^{*} \beta$.

If $\boldsymbol{\beta}=\bar{\beta}$ for some $(1,1)$ current β on X, then we say that $\boldsymbol{\beta}$ descends to X.

Generalized pairs for Kähler varieties.

Let X be a compact Kähler variety.
Let $\nu: X^{\prime} \rightarrow X$ a resolution, B^{\prime} and \mathbb{R}-divisor on X^{\prime} with SNC support such that $B:=\nu_{*} B^{\prime} \geq 0$, and $\boldsymbol{\beta}$ a closed $\mathrm{b}-(1,1)$ current. We say that $(X, B+\boldsymbol{\beta})$ is a generalized pair if

- $\boldsymbol{\beta}$ is a positive closed $\mathrm{b}-(1,1)$ current that descends to X^{\prime},
- $\left[\boldsymbol{\beta}_{X^{\prime}}\right] \in H_{\mathrm{BC}}^{1,1}\left(X^{\prime}\right)$ is nef,
- $\left[K_{X^{\prime}}+B^{\prime}+\boldsymbol{\beta}_{X^{\prime}}\right]=\nu^{*} \gamma$, for some $\gamma \in H_{\mathrm{BC}}^{1,1}(X)$.

Given $(X, B+\boldsymbol{\beta})$ and $\beta=\boldsymbol{\beta}_{X^{\prime}}$, then B^{\prime} is uniquely determined.
A similar definition can be given for the relative setup.

Singularities.

Let P be a Weil divisor over X. Define the generalized discrepancy $a(P, X, B+\boldsymbol{\beta})$ as follows. Let $\nu: X^{\prime} \rightarrow X$ be a log resolution of $(X, B+\boldsymbol{\beta})$ such that $P \subseteq X$? Then $a(P, X, B+\boldsymbol{\beta})=-\operatorname{mult}_{P}\left(B^{\prime}\right)$.

gklt

We say that $(X, B+\boldsymbol{\beta})$ is generalized klt if $a(P, X, B+\boldsymbol{\beta})>-1$.
We say that $(X, B+\boldsymbol{\beta})$ is generalized Ic if $a(P, X, B+\boldsymbol{\beta}) \geq-1$.
We say that $(X, B+\boldsymbol{\beta})$ is generalized dlt if there is an open set $U \subseteq X$ such that $\left(U,\left.(B+\boldsymbol{\beta})\right|_{U}\right)$ is a log resolution, $-1 \underline{\swarrow} a(P, X, B+\boldsymbol{\beta}) \measuredangle 0$ for any prime divisor P on U, and $-1<a(P, X, B+\boldsymbol{\beta})$ for any prime divisor P over X with center in $X \backslash U$.

If $(X, B+\boldsymbol{\beta})$ is a gklt pair, then X has rational singularities.

Theorem. [Dis, Macon, Y. '23]
β_{x} is big
Let $(X, B+\boldsymbol{\beta})$ be a gklt pair, where X is a compact Kähler 3 -fold. Assume that $K_{X}+B+\boldsymbol{\beta}$ is big. Then $(X, B+\boldsymbol{\beta})$ has a log canonical model, and there exist a log terminal model, and all such models admit a morphism to the log canonical model.

Proof relies heavily on the MMP for (x, y)

Sketch of the proof.

- First, reduce to the case $\boldsymbol{\beta}_{X}$ Kähler and (X, B) log smooth.
- We have that $K_{X}+B+\boldsymbol{\beta}_{X}$ is pseudoeffective and that $K_{X}+B+(1+t) \boldsymbol{\beta}_{X}$ is Kähler for $t \gg 0$. Under this setup, we can run a $K_{X}+B+\boldsymbol{\beta}_{X}$ - MMP with scaling of $t \boldsymbol{\beta}_{X}$ that terminates in a log terminal model.

Modified

- Let $X \rightarrow X^{m}$ be such model, with $K_{X^{m}}+B^{m}+\left(\boldsymbol{\beta}_{X^{m}}\right.$ Kähler
- Again, borrowing from the MMP for pairs, we can contract and flip all the $K_{X^{m}}+B^{m}+\boldsymbol{\beta}_{X^{m}}$-trivial curves that are $K_{X^{m}}+B^{m}$-negative. We obtain $X^{m} \rightarrow X^{n}$.

$$
[\text { collins, tosatti] }
$$

- From [Das, Hacon '20], $\operatorname{Null}\left(K_{X^{n}}+B^{n}+\boldsymbol{\beta}_{X^{n}}\right)$ is a union of curves, and they can be contracted.
- Let $X^{n} \rightarrow Z$ be the morphism obtained from contracting $\operatorname{Null}\left(K_{X^{n}}+B^{n}+\boldsymbol{\beta}_{X^{n}}\right)$, then Z is the log canonical model, and the map $X^{m} Z$ is also a morphism.

More results.

- Cone theorem for $\overline{\mathrm{NA}}(X)$ in terms of $K_{X}+B+\boldsymbol{\beta}_{X}$.
- If $K_{X}+B+\boldsymbol{\beta}_{X}$ is not big, then we obtain a contraction after running the MMP. If $K_{X}+B+\boldsymbol{\beta}_{X}$ is not pseudoeffective then we obtain a Mori fiber space.
- Finiteness of some minimal models, and local polyhedral decomposition of space of closed positive $(1,1)$ currents (analogue to results from [BCHM])
- Minimal models are connected by flips, anti flips and flops.

Thank you!

